

Outline of Presentation

2

- I. Why Dynamic Pricing?
- II. Pricing under Regulation vs. Markets
- III. Design Principles for Regulated Pricing
- IV. Wholesale Products (Supply & Demand)
- V. Retail Product Features and Rate Structures
- VI. Experience to Date with Dynamic Pricing
- VII. Lessons in Program Evaluation: NMPC Default RTP Program
- VIII.Design Example 1: Seasonal TOU Rate
- IX. Design Example 2: Interruptible Rate

What is dynamic pricing?

4

- In broad terms, dynamic pricing refers to rates that better reflect electricity costs which vary over time
 - Electricity cannot be stored economically
 - Supply must equal demand at all times to maintain reliability and stability of the power system
 - Dynamic prices reflect cost changes that can vary dramatically in real time, by hour of the day or over seasons of the year

Dynamic pricing vs. demand response

- Sometimes terms are used interchangeably (anything that will encourage overall efficiency by providing better price information)
- Demand response can mean products that are:
 - Aimed at specific load-shape goals (i.e., peak shifting or peak reduction)
 - Controlled by the system operator not the customer

Design Principles and Issues

Design Principle	What it means	Issues and hard spots
1. Revenues in aggregate should recover total costs	 Regulated industry should be financially self-sufficient (no outside subsidies) Cost standard is embedded (depreciated) cost 	 Defining prudence Allowed rate of return on equity Rate shock (nuclear phase-ins; expiration of price freezes)
2. Costs should be allocated fairly	 Total revenue collected from each class should reflect the cost of serving that class Similarly situated customers should be charged the same 	 Typically based on embedded costs Subsidies to residential (voters) and industrial (jobs) classes are common
3. Prices should encourage efficient consumption	 Rate <i>structure</i> should encourage efficient energy use Marginal costs should be used to design rate components 	 Rates designed on average costs are more common than marginal Time-differentiation is rare; dynamic pricing even rarer

Design Principles and Issues

Design Principle	What it means	Issues and hard spots
4. Prices should be equitable or fair	 To some, prices that reflect costs are fair To others, it can mean protection for low income customers, the elderly, farms, churches, VFW, etc.) 	• Equity is in the eye of the beholder
5. Price/revenue stability	 Avoiding undue bill impacts for customers and providing stable revenue to utilities 	 Gradualism in rate changes can severely hamper progress towards efficient pricing if costs are changing rapidly
6. Other goals & special interests	Competition & choiceEnergy efficiencyEnvironmental quality	 These goals would be better served with higher prices for regulated service
The more spec degrees of free	ial considerations that must b edom you have in designing ef	be addressed, the fewer fficient rates

Capacity

Supply Options

 The ability to generate electricity, measured in megawatts (MW)

Demand Resources

- Load reductions displace or augment generation for planning and/or operating resource adequacy
- Load commits to pre-specified load reductions when system contingencies arise
- Penalties are assessed for nonperformance

Energy

Supply Options

 The generation or use of electric power over a period, expressed in kilowatt hours (kWh)

Demand Resources

- Energy-Price
 - Demand-side resource bids to curtail load for scheduling or dispatch and displaces generation resources
 - Penalties are assessed for nonperformance
- Energy-Voluntary
 - Demand-side resource curtails voluntarily when offered the opportunity to do so for compensation
 - Nonperformance is not penalized

Ancillary Services

Supply Options

- Services necessary to support the transmission of electric energy from resources to loads while maintaining the reliable operation of the transmission system
 - Operating reserves, spinning & supplemental generation synchronized to the system and fully available to serve load within the disturbance recovery period
 - Regulation generation that is subject to automatic generation control to follow minute-to-minute fluctuations in load

Demand Resources

- Demand-side resource displaces generation deployed as operating reserves and/or regulation
- Penalties are assessed for nonperformance

A. Price Response to Basic (Average) Rates

Table shows the own price elasticity of demand for electricity (the change in demand associated with a 1% increase in the price of electricity) based on the results of nine studies, some dated

Own-price elasticities* of electricity demand

		Short Ru	n		Long Ru	In
	Mean	Low	High	Mean	Low	High
Residential	-0.3	-0.2	-0.6	-0.9	-0.7	-1.4
Commercial	-0.3	-0.2	-0.7	-1.1	-0.8	-1.3
Industrial	-0.2	-0.1	-0.3	-1.2	-0.3	-1.4

*Percent change in demand associated with a 1% increase in the price of electricity. Residential estimates are from nine studies. Source: Neenan, B., Eom, J. January 2008. "Price Elasticity of Demand for Electricity: A Primer and Synthesis." Electric Power Research Institute, Palo Alto, CA: 2007, 1016264. Available at: www.epri.com

- Traditional utility I/C rates were designed to achieve two objectives:
 - Promote economic development
 - Provide interruptible load for use in system emergencies
- Existing tariffs are not transparent as to:
 - Underlying basis for design (value of interruptibility vs. economic development discount)
 - Extent to which tariff rights are exercised (conditions under which interruptions are actually called)
- Measurement of available peak load reduction is also highly problematic due to differences in how credits are paid (more on this in the design example)

	All SC-3A Customers		Customers Facing Hourly Prices		Survey Respondents	
Business Class	# of Accounts	Peak Demand (MW)	# of H Accounts	Peak Demand (MW)	# of Accounts	
Commercial / Retail	17	55	17	49	11%	
Gov't / Education	44	206	34	166	30%	
Health Care	17	78	8	38	13%	
Manufacturing	46	233	44	221	33%	
Public Works	22	70	16	40	13%	
Totals	146	642	119	514	76	
 NMPC billing customers ex 119 (of 146) at some point 	system a kposed to custome at during	nd customer s hourly varying rs saw SC-3A o the study pe	urveys use g prices r comparal eriod (Sum	d to determi ble hourly-va 1mers 2000	ne whether rying prices - 2004)	

What Barriers to Responding to High Hourly Electricity Prices Were Identified?

Survey Results

N=76)	Frequency	
lo Barriers Encountered	9	
Barriers		
rganization/Business Practices		
• Insufficient time or resources to pay attention to hourly prices	39	
• Institutional barriers in my organization make responding difficult	23	
Inflexible labor schedule	16	
Idequate Incentives		
Managing electricity use is not a priority	17	
• The cost/inconvenience of responding outweighs the savings	17	
sk Averse/Hedged		
• My organization's management views these efforts as too risky	10	
• Flat-rate or time-of-use contract makes responding unimportant	9	

	EMCS or Peak Load Mgmt Devices (N = 37)	Energy Information Systems (EIS) (N = 31)	Onsite generation (N = 42)
o respond to high hourly prices	6	7	3
o reduce overall electricity bills	24	14	2
o reduce peak-demand charges	15	12	1
acility/process control automation	28	11	_
Ionitoring and analysis*	-	9	•
mergency backup/reliability			40
cogeneration	•	•	2

Key Findings: Policy & Program Design Implications

- RTP is best implemented as part of a portfolio of DR option
 - ISO/Utility DR programs can complement RTP
 - Easier to sell because of public duty aspect of ISO-declared events
 - Limited, voluntary exposure is a big plus to many customers
 - Ensure adequate hedging options exist, at least initially
- It will take time to develop price-responsive load
 - Significant number of non-price responsive customers
 - Initial response for most customers is discretionary curtailment (not shifting)
- Targeted education and technical assistance needed to realize customers' inherent price response potential
 - Even more important if RTP is extended to smaller customers

Illustrative TOU Period & Rates

Hour Beginning	Summer Winter		Transition	
12:00 AM	Off-Peak	Off-Peak	Off-Peak	
1:00 AM	Off-Peak	Off-Peak	Off-Peak	
2:00 AM	Off-Peak	Off-Peak	Off-Peak	
3:00 AM	Off-Peak	Off-Peak	Off-Peak	
4:00 AM	Off-Peak	Off-Peak	Off-Peak	
5:00 AM	Off-Peak	On-Peak	Off-Peak	
6:00 AM	Off-Peak	On-Peak	Off-Peak	
7:00 AM	Off-Peak	On-Peak	Off-Peak	
8:00 AM	Off-Peak	On-Peak	Off-Peak	
9:00 AM	Off-Peak	On-Peak	Off-Peak	
10:00 AM	Off-Peak	On-Peak	Off-Peak	
11:00 AM	Off-Peak	Off-Peak	Off-Peak	
12:00 PM	On-Peak	Off-Peak	Off-Peak	
1:00 PM	On-Peak	Off-Peak	Off-Peak	
2:00 PM	On-Peak	Off-Peak	Off-Peak	
3:00 PM	On-Peak	Off-Peak	Off-Peak	
4:00 PM	On-Peak	Off-Peak	Off-Peak	
5:00 PM	On-Peak	Off-Peak	Off-Peak	
6:00 PM	On-Peak	Off-Peak	Off-Peak	
7:00 PM	On-Peak	Off-Peak	Off-Peak	
8:00 PM	Off-Peak	Off-Peak	Off-Peak	
9:00 PM	Off-Peak	Off-Peak	Off-Peak	
10:00 PM	Off-Peak	Off-Peak	Off-Peak	
11:00 PM	Off-Peak	Off-Peak	Off-Peak	

Summer: Jun through Sep		
Transition: Four remaining months		
On-Peak Summer Season: Monday through Sunday		
On-Peak Winter Season: Monday through Friday only		

Winter: Dec through Mar

2. Simulate Customer Response to Initial Design

Modeling inputs:

- Customer class load shapes
- Elasticities of substitution which reflect how a percentage change in the ratio of peak to off-peak prices results in a change in the ratio of customers' peak and off-peak usage
- Assumption is that the main impact is a shift in demand, not a reduction
- Can use industry estimates if utility-specific estimates are not available

Customer Class	TOU/CPP			Day Ahead RTP				
Customer Class	Low	Med	High	Case	Low	Med	High	Case
Residential	0.04	NA	0.21	0.10	NA	NA	NA	NA
Commercial	0.04	NA	0.21	0.10	NA	NA	NA	NA
Industrial	NA	NA	NA	NA	0.02	NA	0.27	0.13

*Source: U.S. Department of Energy, Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them, A Report to the United States Contress Pursuant to Section 1252 of the Energy Policy Act of 2005, February 2006, Appendix C: Intensity of Customer Demand Response, Table C-1. Demand Response Program and Pricing Studies: Estimated Price Elasticity of Demand, p. 88.

Designing an Interruptible Rate (2)

Product Feature	Greatest Value to the System	Greatest Appeal to Customers				
Interruption Features						
 Notice 	Short	Long				
 Duration 	Long	Short				
Frequency	High	Low				
Length of Contract	Long	Short				

Features that have the greatest value to the wholesale market have the lowest appeal to customers who will be interrupted.

81

